LESSON 3.5

Solving Systems of Nonlinear Equations

Today you will:

• Solve systems of nonlinear equations

Core Vocabulary:

• System of nonlinear equations, p. 132

What does it mean to solve a system of equations?

Find all the points (ordered pairs) that are solutions for all equations in the system.

Find all the points of intersection for the equations in the system.

What methods do we know for solving a system of equations?

1. Substitution

2. Elimination

Solve the system by substitution.
$$x^2 + x - y = -1$$

$$x^2 + x - y = -1$$

Equation 1

$$x + y = 4$$

Equation 2

SOLUTION

Begin by solving for *y* in Equation 2.

$$y = -x + 4$$

Solve for *y* in Equation 2.

Next, substitute -x + 4 for y in Equation 1 and solve for x.

$$x^2 + x - y = -1$$

Write Equation 1.

$$x^2 + x - (-x + 4) = -1$$

Substitute -x + 4 for y.

$$x^2 + 2x - 4 = -1$$

Simplify.

$$x^2 + 2x - 3 = 0$$

Write in standard form.

$$(x+3)(x-1) = 0$$

Factor.

$$x + 3 = 0$$
 or $x - 1 = 0$

Zero-Product Property.

$$x = -3$$
 or $x = 1$

Solve for x.

To solve for y, substitute x = -3 and x = 1 into the equation y = -x + 4.

$$y = -x + 4 = -(-3) + 4 = 7$$

Substitute -3 for x.

$$y = -x + 4 = -1 + 4 = 3$$

Substitute 1 for *x*.

The solutions are (-3, 7) and (1, 3).

Do pg 136 #18, 19 – solve by substitution

18.
$$x = 3$$

$$-3x^2 + 4x - y = 8$$

19.
$$2x^2 + 4x - y = -3$$

 $-2x + y = -4$

- **18.** (3, −23)
- **19.** no solution

$$2x^2 - 5x - y = -2$$

Equation 1

$$x^2 + 2x + y = 0$$

Equation 2

SOLUTION

Add the equations to eliminate the *y*-term and obtain a quadratic equation in *x*.

$$2x^2 - 5x - y = -2$$

$$\frac{x^2 + 2x + y = 0}{3x^2 - 3x = -2}$$

$$3x^2 - 3x + 2 = 0$$

$$x = \frac{3 \pm \sqrt{-15}}{6}$$

Add the equations.

Write in standard form.

Use the Quadratic Formula.

Because the discriminant is negative, the equation $3x^2 - 3x + 2 = 0$ has no real solution. So, the original system has no real solution.

Do pg 137 #29, 30 – solve by elimination

29.
$$-3x^2 + y = -18x + 29$$

 $-3x^2 - y = 18x - 25$

30.
$$y = -x^2 - 6x - 10$$
 $y = 3x^2 + 18x + 22$

- **29.** no solution
- **30.** (-2, -2) and (-4, -2)

What kind of equation is $x^2 + y^2 = 25$?

It is a circle with radius 5 and center at (0, 0).

General equation for a circle: $x^2 + y^2 = r^2$ where r is the radius and the center is at (0, 0).

$$x^2 + y^2 = 10$$

$$y = -3x + 10$$

Equation 2

SOLUTION

Substitute -3x + 10 for y in Equation 1 and solve for x.

$$x^{2} + y^{2} = 10$$

$$x^{2} + (-3x + 10)^{2} = 10$$

$$x^{2} + 9x^{2} - 60x + 100 = 10$$

$$10x^{2} - 60x + 90 = 0$$

$$x^{2} - 6x + 9 = 0$$

$$(x - 3)^{2} = 0$$

$$x = 3$$

Write Equation 1.

Substitute -3x + 10 for y.

Expand the power.

Write in standard form.

Divide each side by 10.

Perfect Square Trinomial Pattern

Zero-Product Property

To find the *y*-coordinate of the solution, substitute x = 3 in Equation 2. y = -3(3) + 10 = 1

solution because it does not

COMMON ERROR

You can also substitute

x = 3 in Equation 1 to find y. This yields two apparent

solutions, (3,1) and (3,-1).

However, (3, -1) is *not* a

The solution is (3, 1).

Do pg 137 #42 – solve using any method and explain your choice

42.
$$-x^2 + y^2 = 100$$
 $y = -x + 14$

42. about (3.43, 10.57); *Sample answer:* substitution because the second equation can be substituted into the first equation

Homework

Pg 136 #15-24, 27-35, 37-40